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Decoupling of fields from escaping sources in a de Sitter 
universe 

Daksh Lohiya and N Panchapakesan 
Department of Physics and Astrophysics, University of Delhi, Delhi-1 10007, India 
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Abstract. We explore the behaviour of some fields coupled to their respective sources as the 
latter approach the de Sitter horizon. I t  is found that the electromagnetic interaction 
between the source and a typical detector near the origin vanishes as the source is slowly 
allowed to ‘escape’ into the horizon. Properties of propagators for a massive vector field, a 
scalar field and the electromagnetic field are investigated to show how each of these fields in 
a way decouples from its source resulting in the non-measurability of the associated 
quantum numbers. This is in contrast to the situation in the Schwarzschild case in which a 
quasi-static approach of a charge towards the singularity result in a Reisner-Nordstrom 
black hole. The observer dependence of the decoupling is discussed. 

1. Introduction 

A good deal of progress has been made (Bekenstein 1972, Israel 1967, Price 1972) on 
the loss of information about the constitution of matter going down a black hole except 
the total mass, charge and angular momentum-a situation well described by Wheeler 
as ‘a black hole has no hair’. In  this article we shall investigate the possibility (and the 
nature) of the loss of information about (say) a star that approaches the cosmological 
event horizon in a de Sitter universe. We shall restrict ourselves to the issue of 
measurability of the number of baryons constituting the source (star) and its total 
charge. 

In the next section we shall deal with the problem of a point charge quasi-statically 
approaching the de Sitter horizon, following the analogous problem for the Schwarz- 
schild case by Cohen and Wald (1971). 

I t  is found that by requiring the observable invariant of the electromagnetic field to 
be well behaved at the horizon and at the origin, a unique solution of Maxwell’s 
equations ensues. This resulting solution indicates that as the source approaches the 
horizon, the electromagnetic field near the origin vanishes. Thus any interaction 
between the source and a (charged) detector near the origin will vanish. This may be 
interpreted by the detector as the electromagnetic field itself ‘decoupling’ from the 
source. 

In § 3 we start by reviewing the general considerations of the decoupling of a typical 
field from its source as developed by Teitelboim (1972). A quantum field 9 interacting 
with a classical source is expressible as 

(1.1) 9 = W” +(coupling constant) x Z(X)  
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where I ( x )  is an integral containing the free field retarded propagator, the world line of 
the source and (sometimes) the field itself. The behaviour of Z(x) as the source- 
detector distance approaches the de Sitter radius determines whether the resulting field 
is capable of contributing to a process that may be observable by the detector. In  flat 
space, the propagator is invariantly defined as the Green function of the corresponding 
wave equation. The Fourier transform in time, moreover, represents outgoing waves 
for the modes for which wave propagation exists, and exponential damping for the other 
modes. 

An analogous characterisation in the de Sitter space-time can be obtained by 
resorting to the tortoise coordinate r* defined by 

r* = In (s) 
where r is the usual de Sitter coordinate and a is the radius of the de Sitter horizon. 

the metric to 
The transformation (1.2) pushes off the horizon at r = a to r* = co and transforms 

d s 2 =  -(1 -r2/a2)(dt2-dr**)+r2(d02+sin2 O dq52). (1.3) 

In terms of r * ,  the task of finding a retarded propagator reduces to solving the following 
radial equation 

[ - d 2 / J t 2 + d 2 / a r * 2 -  V , ( r * ) ] A ( r * ,  r*’;  t - r ’ ) = S ( r * - r * ’ )  S ( t - r ’ )  (1.4) 

where the ‘effective potential’ V l ( r * )  is strictly positive for finite r* and goes to a 
constant value CL as r* + a, the value depending upon the field under consideration. 
Further, this potential does not admit any bound states. The retarded propagator is 
then characterised by the following boundary conditions 

02- p2>  0 (1.5b) 
w 2 - p 2  < O .  ( 1 . 5 ~ )  

exp[i(w2-p 2 1/2  * 
exp[-(w2-w r I, 

r I, 
2 1 1 2  * A ( x ,  x’; w )  - 

r*-m 
W > O  

Equation ( 1 . 5 ~ )  ensures that invariants constructed from the field are bounded at the 
horizon. Equation (1.4) is solved in § 3 for a massive scalar and a massive vector field in 
a way that the solutions respect the boundary condition (1.5). I t  is found that as the 
source approaches the horizon, I ( x )  + 0. This implies that the baryon number of the 
source would not be measurable by a detector near the origin. The observer depen- 
dence of the decoupling is mentioned. § 3 shows how some of the results earlier derived 
for the electromagnetic field can be reiterated by constructing a retarded propagator as 
a solution to the corresponding equation (1.4). The boundary condition ( 1 . 5 ~ )  is seen to 
be superfluous as the electromagnetic potential is not an observable quantity and may 
diverge at the horizon. I t  is seen how the requirement of boundedness of the observable 
invariant IF,,,F,’” can be used to construct the propagator. Unlike the massive meson 
cases, the ‘coupling integral’ Z(x) need not vanish as the source approaches the horizon 
to imply ‘decoupling’ of the electromagnetic field, it suffices Z(x) to approach a constant 
value, as only the derivatives are observable quantities. I t  is thus that the claims of § 2 
are reinforced. 
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2. A point charge in a de Sitter space-time 

Consider a point test charge at rest at a point r = ro< a along the z axis in a de Sitter 
space with the metric 

(2.1) 

the charge being small enough to render the back reaction on the metric negligible. The 
Maxwell equation (Misner et af 1972) 

ds2=-(1-r2/a2) dt2+(1 -r2/a2)-’ dr2+r2(d62+sin2 e dq5’) 

(2.2) 
a 

a x  
4=jp = F””;,, = ( -g)- ’”,[(-g)’ ’2FwM] 

where FM,, = AV,& -AM,,, can easily be seen to reduce to 

a aAo aA r2  -1 

-4rj0= rF2;( r2$) +( 1-2 )  (r2 sin e)-’-( ae sin 6 7 )  (2.3) 

where j ’  and A‘, i = r, 19, 4, have been taken to be zero to correspond to the static 
problem we are considering. 

Expanding A. as 
CO 

A&, 0) = 1 Rr(r)Pi(cos 6) 
I =o 

yields for the source free region 

(1 -r2/a2)d/dr(r2 dRl/dr)-f(f + l)Rl(r) = 0. (2.4) 

The following may be chosen as linearly independent solutions 

for 1 = 0 (2.5) 
2 1/2  

a+’(>- I) pi(!) for all I z 0. 
fi(r) = (I  - l)!  i (21 - l)!! r 

where Pi and Q; are the two Legendre polynomials (Abramowitz and Stegun 1965). 
The ensuing analysis shall require the following properties of fl(r) and gl(r): (a) For 
1 = 0, go(r) = 1 andfo(r) = r-’ (by definition). (b) For all 1, as r << a, gr + rl andfi + r-(’+’). 
(c) As r + a, gl +finite constant but dg/dr blows up as ln(a/r - 1) for 1 # 0. Also for 1 # 0 
fi(r) + zero as (a/r - 1) but dfildr + finite constant. 

To require the total charge of the source to be e, the current must have the form 
(Cohen 1971) 

io = ea(r -ro)S(cos 6 - 1) 

For r < ro and r > ro equation (2.3) reduces to the source free equation with the general 
solution 

f (Alfi(r)+A;gl(r))Pl(cos 6% r > ro 

(2.6) 
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Requiring the invariant 

~F,,,Fs’” = ( a A o / d r ) 2 +  Y 2 ( 1  - r2 /a2 ) -1 (aAo /a0)2  

to be bounded at the origin and at the horizon, we can see, from the behaviour of fi, gi 
and their derivatives at the origin and at the horizon, that A;  = B ;  = 0. Further, the 
continuity of A0 at r = ro implies 

( 2 . 7 ~ )  

(2.7b) 

From equation (2.3) and A,, = X R f ( r ) P f ( c o s  0) we can see from the properties of the 
Legendre function and after an integration from ro - E to ro + E that 

- e=  c,/(21+ 1 ) r i W ( g f , f i ,  ro) (2.8) 

where W ( g f ,  fi, ro) is the Wronskian of gf andfi. From the asymptotic form of f i  and gl at 
small r, it follows that r i  W ( g l ,  f i ,  ro) = -(21+ 1) giving c /  = e thereby completely speci- 
fying the solution (2.7).  

To look into the implications of this solution, we first note that in the orthonormal 
frame 

uo = (1 - r 2 / a 2 ) l I 2  dt, w 3  = r sin 0 db,  

the non-vanishing components of the electromagnetic field tensor FWy are 

w ’  = dr (1  -r2/a2)-”’, w 2  = r de, 

Fo, = -Flo = -aAo /ar ;  FO2 = -F20 = r - ’ ( l -  r2 /a2) - ’ /2aAo/a0 .  

From these forms, we can determine the interaction of the source with a detector as seen 
by an observer near the origin. For example for r > ro, 1 # 0 and r + a ,  we get from the 
property (c) of ff that Flo  shall remain finite with F20 vanishing as ( a l r  - 1)’”. Thus 
there shall be a net flux into the horizon. For r < ro and 1 # 0 and with r and ro both near 
the horizon, a ,  we can see 

F10/F20- (1 - r 2 / a 2 ) ’ / 2  In(r /a  - 1)+0,  

i.e. the field shall be mainly tangential. From these considerations and the properties of 
fi and gi we conclude that the field remains well behaved at the horizon as the source 
approaches it in accordance with ou r  assumption that the charge shall not have a 
significant back reaction on the metric by drastically affecting the horizon. 

As the source approaches the horizon, the field near the origin shall from (2.7b) 
approach zero for the 1 # 0 modes and shall be independent of r, 8 for the 1 = 0 
modes-in both cases giving a null contribution to the observable invariants rendering 
the charge of the source non-measurable. It may be further noted that although in the 
frame of the source (say r‘, e‘, b’, t ‘ )  because of the homogeneity and isotropy of the de 
Sitter spacetime, the original ‘detector’ previously at r = 0 now appears to be at r’ = a ,  
the field at the horizon from ( 2 . 7 ~ )  does not go to zero, yet an observer stationed at 
r’ = 0 cannot determine the charge of the detector as the latter approaches the horizon 
because of the infinite Doppler shift that will ‘screen’ the finite motion of the detector 
due to the finite field at r’ = a. Thus we conclude that all information about the charge in 
a star is lost as it crosses the cosmological event horizon in a de Sitter universe. 
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3. Decoupling by propagator analysis 

We shall here see how we can study the decoupling of a field from its source by 
constructing its propagator to satisfy equation (1.5). We start with a scalar meson field. 

Consider the scalar meson field interacting with a baryon source of world line ~ ' ( 7 )  

according to the generally covariant interaction 
m 

( O 2 - p 2 - R / 6 ) 4 ( x )  = A  

having a solution 

(3.1) 

where 
m 

= A  d7 A R ( x ,  ~ ' ( 7 ) )  

= A ( l  - r 2 / a 2 ) l ' *  A R ( x ,  x' ;  w = 0) (3.3) 

for a source at rest at the point x ' ;  the retarded propagator appearing in (3.3) being a 
solution of 

( U 2 - p 2 -  R / 6 )  A ( x ,  x ' ) ~ [ ( - g ) - l ' ~  a/dX"(( -g)1 '2g"p d / d x p ) - p 2 -  R / 6 ]  A ( x ,  x ' )  

= S4(x, x') (3.4) 
(the results of this section are unaltered by neglecting the R / 6  term). From the 
spherical symmetry of the background, the Fourier component of the radial part of the 
propagator can be seen to satisfy 

(82 /dr*2  + w 2  - V , ( r * ) )  A(d'(r*, r*';  w )  = S(r*  - r*') 

with 

v l ( r * )  = (1 - r 2 / a 2 ) ( / ( / +  l ) / r 2 + p 2 )  

The radial Green function can be written as 

r* < r*' 
r* > r*' 

A ' ( r* ,  r*';  0) = W -  

(3.5) 

(3 .6)  

where f l  and f2 are linearly independent solutions to the equation (3.5) without the S 
function in the right hand side and W is their Wronskian. To satisfy the boundary 
condition (1.5) we choose 

(3.7) 

Using these and the behaviour of the reflection amplitude R ' ( w )  for low frequencies, we 
can show that for 0 << r* < r*' 

lim A'(r*,  r*';  w = 0) = Fo(r*) 
r*'+m 

where Fo(r*)  is the solution to the zero energy radial equation and goes as -r* -a '  as 
r* + co (where a' is a constant depending upon R ' ( w ) ) .  Equation (3.3) then implies that 
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the coupling should extinguish as ( 1  - r ’ 2 / a 2 ) 1 / 2  as r ’+  a. Thus the Yukawa like force 
between two baryons vanishes as ( 1  - r ’ 2 / a 2 ) 1 / 2  as one of the baryons approaches the 
horizon, irrespective of where the other baryon is. (Although Fo(r*) + a as r* + CO, the 
Yukawa force between the two baryons shall still existinguish in the limit as 
( 1  - r ’ / a 2 )  In(a - r )  - 0) .  

r+n 

This result reflects strongly upon the observer dependence of particle quantum 
numbers such as the baryon number. Two baryons that may be interacting strongly by 
the exchange of scalar mesons shall, in the frame of an observer who is at the coordinate 
distance a from any (or both) of the baryons, appear not to be interacting at all. Thus 
the measurability of the baryon number that depends upon the coupling of the scalar 
field to the baryon shall become an impossible task by the observer just mentioned in 
spite of the fact that the baryons may be close to each other and interacting very strongly 
in any frame sufficiently close to them. 

Considering next a vector meson field 4” coupled to a classical current j ”  by 

4Fu;y +p24” = 4.rrj’ ( 3 . 8 )  

4 W ”  = 4 ( V , d .  
where 

The solution can be exhibited, as done by Teitelboim (1972) ,  in terms of a bitensor 
propagator A r ( x , x ’ )  that connects the current j ”  to the field 4” where 4 ” ( x ) =  
4 ” ‘ i ” ’ ( x ) + d ” ( x ) .  Considering the source to be static, we shall require only the 
zero-frequency component of the time transform of the propagator and only the 
A&, x’; w = 0) components. In fact for a point source of strength A at rest at x’, 
&o(x) = A AOO(X, x’; w = 0). Expanding the propagator as 

Aoo(x, x’; w = 0)  = ( r r ’ ) - ’ [ ( l -  r 2 / a 2 )  
m 1 

~ ( I - r ’ ~ / a ’ ) ] ~ ~ ~  1 A‘(r*, r*’) 1 Yim(O, 4 ) Y % , ( 8 ’ ,  4’)  (3.9) 
1 =o m = - f  

we get the following equation for Af(r* ,  r*’): 

[d2 /ar*2-  Vf(r*))A’(r*,  r*’) = S(r* - r*’ )  

where 

v f ( r * ) = ( 1 - r 2 / a 2 ) ( 1 ( 1 + l ) / r 2 + p 2 ) + a - 2  

At the horizon (r* +a) this potential approaches a-’. 
Writing as before 

r* < r*’ 
r* > r*’ 

A‘(r*, r*’) = W -  

(3 .10 )  

(3 .11 )  

(3 .12 )  

In order to satisfy the boundary conditions (1 .5 ) ,  we must choose f l ( r * )  - exp(-r*/a). 
Thus for r* C r*’ we get 

A1(r*, r*’) - W-’(l- r ’Z/a2)1’2f2(r*) .  

This implies that the field decouples faster, namely as ( 1  - r r 2 / a 2 ) ,  as compared to the 
scalar field case. 

For the electromagnetic field, the boundary conditions ( 1 . 5 ) ,  which are constructed 
in order that the invariants constructed from the fields be bounded at the horizon 
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(except q$”q$, for the case of the vector field), should be reconsidered, as the elec- 
tromagnetic potential A ”  is not an observable quantity and need not be bounded at the 
horizon. Requiring the observable invariant 

iF,P”” = (aA0/ar)’+r-’(l -r’/a’)-’(dAO/dy)’, 

(y being the angle between the (e, 4 )  and (e ’ ,  4’)  directions) to be bounded at the 
horizon implies that for 1 # 0, fl(r*) should go as exp(-r*/a) as r* + W. This implies 
that for r* < r*’, q$o(x) = Af2(r*)fl(r*’) + zero as r + a for all 1 f 0. 

For 1 = 0, the solution to equation (3.10) (for CL = 0) can be any linear combination of 
[(r + a ) / ( r  -U)]”’ and [(r - a) / ( r  + U)]”’ (i.e. exp(*r*/a)) as both these, when 
combined with equation (3.9), give finite values for the observable invariant at the 
horizon. Thus the boundary condition at the horizon does not uniquely determine the 
form of the propagator. If we require the observable invariant to be bounded at the 
origin as well then it follows that f2(r*) must have the form exp(r*/a) - exp(-r*/a). 
This implies that 

q$,.,(x) = (4A/rr’)[(l- r2/az)(1 - r‘’/~’)]~/’ sinh(r*/a) cosh(r*’/a), r* < r*’. 

This approaches a constant value for r << a and thereby does not yield any elec- 
tromagnetic field by which an observer near the origin could determine the charge of the 
source. We thus obtain the result of 8 2 without finding the exact solutions of the 
Maxwell’s equation. 

In summary we conclude that the interaction between a source coupling to a scalar 
or a vector meson field, and a detector, vanishes as the source approaches the horizon 
with respect to an observer (at the origin). For the electromagnetic field of a point 
charged source approaching the horizon the electromagnetic potential for the 1 # 0 
modes vanishes as the source approaches the horizon and attains a constant value for 
the 1 = 0 mode-in neither case contributing to an observable field. 
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